A novel semiconductor compatible path for nano-graphene synthesis using CBr4 precursor and Ga catalyst
نویسندگان
چکیده
We propose a novel semiconductor compatible path for nano-graphene synthesis using precursors containing C-Br bonding and liquid catalyst. The unique combination of CBr4 as precursor and Ga as catalyst leads to efficient C precipitation at a synthesis temperature of 200 °C or lower. The non-wetting nature of liquid Ga on tested substrates limits nano-scale graphene to form on Ga droplets and substrate surfaces at low synthesis temperatures of T ≤ 450 °C and at droplet/substrate interfaces by C diffusion via droplet edges when T ≥ 400 °C. Good quality interface nano-graphene is demonstrated and the quality can be further improved by optimization of synthesis conditions and proper selection of substrate type and orientation. The proposed method provides a scalable and transfer-free route to synthesize graphene/semiconductor heterostructures, graphene quantum dots as well as patterned graphene nano-structures at a medium temperature range of 400-700 °C suitable for most important elementary and compound semiconductors.
منابع مشابه
Subeutectic Synthesis of Epitaxial Si-NWs with Diverse Catalysts Using a Novel Si Precursor
The applicability of a novel silicon precursor with respect to reasonable nanowire (NW) growth rates, feasibility of epitaxial NW growth and versatility with respect to diverse catalysts was investigated. Epitaxial growth of Si-NWs was achieved using octochlorotrisilane (OCTS) as Si precursor and Au as catalyst. In contrast to the synthesis approach with SiCl(4) as precursor, OCTS provides Si w...
متن کاملDehalogenation and coupling of a polycyclic hydrocarbon on an atomically thin insulator.
Catalytic activity is of pivotal relevance in enabling efficient and selective synthesis processes. Recently, covalent coupling reactions catalyzed by solid metal surfaces opened the rapidly evolving field of on-surface chemical synthesis. Tailored molecular precursors in conjunction with the catalytic activity of the metal substrate allow the synthesis of novel, technologically highly relevant...
متن کاملFischer–Tropsch Synthesis with Cu-Co Nanocatalysts Prepared Using Novel Inorganic Precursor Complex
The structural properties and activities of Cu-Co catalysts used in Fischer-Tropsch synthesis are explored according to their method of preparation. Impregnation, co-precipitation, and a novel method of thermal decomposition were applied to an inorganic precursor complex to generate the Cu-promoted alumina- and silica-supported cobalt catalysts. The precursors and the catalysts obtained by ...
متن کاملNano-TiO2: A novel, efficient and recyclable catalyst for the synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles in solvent-free conditions
A convenient and efficient one-pot four-component synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles using nano TiO2 as a recyclable catalyst is reported. The results show that the methodology has several advantages such as low loading of catalyst, excellent yield, short reaction time, operational simplicity and solvent-free conditions.
متن کاملSynthesis and characterization of high-temperature ceramic YBCO nanostructures prepared from a novel precursor
As a new precursor, [tris(2-hydroxyacetophenato) triaqua(III)], [Y(HAP)3(H2O)3]; complex was used in thermal decomposition process for the synthesis of rod-like high-temperature ceramic YBCO with length of about 320-350 nm and diameters 60–90 nm. The as-synthesized products were characterized by XRD, FT-IR, TEM, SEM and EDX analyses. The results showed that by u...
متن کامل